lunes, 29 de junio de 2009

Movimientos de Astros y Partículas - Daniela E. C. - 1ºCuat - 2009

Movimientos de Astros y Partículas - Silvina C. - 1ºCuat - 2009


La leyes de Kepler.


El tema de los movimientos planetarios es inseparable de un nombre: Johannes Kepler. La obsesión de Kepler por la geometría y la supuesta armonía del universo le permitió, luego de varios frustrados intentos, enunciar las tres leyes que describen con extraordinaria precisión, el movimiento de los planetas alrededor del Sol. Desde una posición cosmológica copernicana, que como hemos visto en esa época era más una creencia filosófica que una teoría científica, Kepler logró esta magnífica empresa de manera totalmente empírica, sin más teoría que su propio convencimiento sobre el carácter fundamental (divino) de la geometría, y utilizando la gran cantidad de datos experimentales obtenidos por Tycho Brahe.
La primera ley establece, a pesar de su autor, que los planetas describen órbitas elípticas alrededor del Sol, que ocupa uno de sus focos. En la escala de valores geométricos de Kepler, el círculo ocupaba un lugar privilegiado y de ahí su decepción, luego de múltiples intentos por compatibilizar las observaciones con órbitas circulares.
Primera Ley: "La orbita que describe cada planeta es una elipse con el Sol en uno de sus focos"

Las elipses de las trayectorias sonde muy poca excentricidad, de tal manera que difieren muy poco de la circunferencia. Asì por ejemplo , la excentricidad de la órbita de la Tierra es e=0,017, y como la distancia Tierra-Sol es aproximadamente 150.000.000 de Km. la distancia del Sol (foco) al centro de la elipse es de ae=2.500.000 Km.
La segunda ley se refiere a las áreas barridas por la línea imaginaria que une cada planeta al Sol, llamada radio vector. Kepler observó que los planetas se mueven más rápido cuando se hallan más cerca del Sol, pero el radio vector encierra superficies iguales en tiempos iguales. (Si el planeta tarda el mismo tiempo en ir de A a B en la figura, que de C a D, las áreas en blanco son iguales).
Segunda Ley: "Cada planeta se mueve de tal manera que el radio vector (recta que une el centro del Sol con el planeta) barre áreas iguales en tiempos iguales"
El radio vector r, o sea la distancia entre el planeta y el foco (Sol) es variable, pues es mínima en el perihelio y máxima en el afelio. Como la velocidad areal (área barrida en la unidad de tiempo) es constante, la velocidad del planeta en su órbita debe ser variable. En virtud de esta ley, si las áreas PFM y AFN son iguales, el arco PM será menor que el AN, lo que indica que el planeta se desplaza más ligero en el perihelio. Es decir, su velocidad es máxima a la mínima distancia al Sol y mínima a la máxima distancia.

Finalmente, la tercera ley relaciona el semieje mayor de la órbita, llamado a, al período orbital del planeta p, de la siguiente manera: a^3/P^2 = constante. De acuerdo a esta ley, la duración de la trayectoria orbital de un planeta aumenta con la distancia al Sol y así sabemos que el “año” (definido como el tiempo empleado por el planeta en volver al mismo punto de su órbita) en Mercurio tiene 88 días (terrestres), en Venus 224, en la Tierra 365 y sigue aumentando a medida que nos alejamos del Sol. Estas leyes permiten también deducir las distancias relativas de los objetos del sistema solar, si conocemos sus movimientos. Determinando independientemente alguna de ellas es posible conocer sus valores absolutos.
Tercera Ley: "El cuadrado de los períodos de revolución de dos planetas es proporcional a los cubos de sus distancias medias al Sol." (ver una animación de
Si a1, y a2 son las distancias medias al Sol de dos planetas, por ejemplo Marte y la Tierra, y p1 y p2 son los respectivos tiempos de revolución alrededor del Sol, de acuerdo con esta ley resulta que:
donde el tiempo està dado en años y la distancia en unidades astronómicas (UA=150.000.000 Km.)
Dados el periodo P y la distancia a de un planeta al Sol; y el período o la distancia de otro, se puede determinar el dato incógnita. Por ejemplo, para la Tierra P1 1 año; a1 = 1 UA; y para Venus a2 = 0,72 UA, se puede calcular el período P2 de Venus:

Si dado el período de revolución de un planeta se desea conocer la distancia, se aplica la expresión: que para el caso del planeta más lejano del sistema solar, Plutón, donde P2 = 248 años, resulta:
Posteriormente al enunciado de esta ley hecho por Kepler, Newton probó que en la misma deben aparecer las masas de los cuerpos considerados, y de esta manera obtuvo la siguiente fórmula: donde M es la masa del Sol (el cuerpo situado en el foco de la Órbita), igual a 330 000 veces la masa de la Tierra, y m1 y m2 son las masas de los de cuerpos considerados que se mueven a su alrededor en orbitas elípticas. Esta expresión permite calcular la masa de un planeta o satélite, si se conoce su periodo de traslación P y su distancia media a al Sol. (ver Ley de Bode)
En general para los planetas del sistema solar solo las masas de Júpiter y Saturno no son despreciables respecto a la del Sol. De esta manera , en la mayoría de los casos se considera (M+m) igual a: 1 masa solar y se obtiene así la expresión dada originalmente por Kepler.
Por primera vez una única curva geométrica, sin agregados ni componentes, y una única ley de velocidad resultan suficientes para predecir las posiciones planetarias, y por primera vez también, las predicciones son tan precisas como las observaciones.
Estas leyes empíricas recién encontraron su sustento físico y matemático en la teoría de la gravitación universal de Newton, quien estableció el principio físico que explica los movimientos planetarios. La construcción de este cuerpo de ideas que comienza con Copérnico y culmina en la mecánica de Newton es un ejemplo por excelencia de lo que se considera un procedimiento científico, al que se puede describir muy esquemáticamente de la siguiente forma: se observa un hecho, se mide y se confecciona una tabla de datos; luego se trata de encontrar leyes que relacionen estos datos y, finalmente, se busca un principio que sustente o explique las leyes.
Una vez encontrado, este principio físico permite en general conectar hechos considerados previamente independientes y explicar más fenómenos además de aquellos que motivaron su formulación. Newton fue así capaz de establecer que el movimiento de los planetas alrededor del Sol y la caída de los cuerpos sobre la superficie terrestre son dos manifestaciones del mismo fenómeno: la gravedad.

En general es difícil separar estos pasos claramente. El salto del sistema tolemaico al copemicario se realizó en mayor medida debido a la reinterpretación de ciertas observaciones que a la obtención de nuevos datos. Incluso Kepler formuló sus leyes escudriñando más en detalle esencialmente las mismas observaciones Ptolomeo había mencionado que los movimientos aparentes de los astros podían explicarse suponiendo que la Tierra estaba en movimiento. Pero tal suposición no proporcionaba más que un mecanismo conveniente para los cálculos, y dado que la cosmología aristotélica requería una Tierra inmóvil en el centro del universo, prefirió adoptar la suposición que resultaba verdadera en el marco de la física aceptada en ese momento.

En realidad la escuela de Pitágoras había establecido mucho tiempo antes, en el siglo VI a.C., que tanto la Tierra como el Sol se movían alrededor del “fuego central”. Aristarco de Samos (siglo nI a.C.) —mejor conocido por sus mediciones de las distancias al Sol y a la Luna, lo que configuró una tarea extraordinaria considerando las herramientas matemáticas de la época— sostenía que la Tierra rotaba sobre su eje y describía una órbita alrededor del Sol. También algunos filósofos del Renacimiento habían asignado movimiento a la Tierra. Pero ninguno de ellos usó esa suposición como punto de partida para dar una descripción detallada y sistemática de los movimientos aparentes de los cuerpos celestes.
En la labor científica no es sencillo decidir qué elementos o datos deben ser relacionados por las leyes. Kepler nos brinda un ejemplo de selección de “pistas útiles”.

En 1609 el científico italiano Galileo Galilei (1564-1642) fue el primero en dirigir un telescopio al cielo y como resultado, proporcionó a la astronomía el primer conjunto de datos cualitativamente nuevos, desde la antigüedad. El telescopio permitió descubrir nuevas pruebas en favor del modelo heliocéntrico. La Vía Láctea, hasta entonces un objeto nebuloso considerado más cercano a la esfera de la Tierra que a la de las estrellas, pudo resolverse por primera vez en una enorme cantidad de estrellas, demasiado débiles y pequeñas para ser separadas individualmente por el ojo desnudo. El telescopio permite efectivamente separar dos estrellas que a simple vista parecen como una sola. Esta propiedad se llama poder de resolución y se define con la mínima separación angular de dos estrellas que puede observarse. Cuanto mayor es la apertura (o el diámetro del objetivo) mayor es el poder de resolución. Esta innumerable cantidad de nuevos objetos volvió a dar credibilidad a la idea de un universo mucho más grande de lo supuesto por los antiguos astrónomos, tal como había sugerido Copérnico.

El telescopio también permitió resolver una paradoja usada por Tycho contra el modelo copenicano: si el universo es tan grande como requiere la ausencia de paralaje, entonces las estrellas deben ser extremadamente grandes. Hasta entonces los tamaños estimados de las estrellas no eran superiores al del Sol y estas estimaciones se hacían suponiendo un valor para la distancia a las estrellas . En base al mismo, el tamaño angular observado podía transformarse en una estimación de sus dimensiones lineales. Pero si esta distancia aumentaba tanto, también aumentaba el tamaño de las estrellas. Las estrellas más brillantes tendrían diámetros más grandes que la órbita de la Tierra y esto parecía imposible.

El telescopio permitió descubrir que tal argumento era falso. Aunque aumentó notablemente el número de estrellas visibles no hizo lo mismo con su tamaño. A diferencia del Sol, la Luna y los planetas que se agrandan sustancialmente cuando se observan a través del telescopio, las estrellas mantienen su tamaño. El diámetro angular de las estrellas se había sobrestimado y actualmente sabemos que esto es una consecuencia de la turbulencia atmosférica, el mismo fenómeno que hace parecer que las estrellas titilan.

El nuevo instrumento permitió también descubrir “imperfecciones” en las superficies lunar (cráteres, montañas, zonas claras y oscuras) y solar, lo que sembró dudas sobre la “naturalidad” de la distinción tradicional (aristotélica) entre las regiones terrestre (repleta de imperfecciones) y celeste (perfecta). El movimiento de las manchas observadas en la superficie solar sugirió que el Sol rota y así la rotación de la Tierra dejó de ser una idea descabellada. El descubrimiento de las “lunas” de Júpiter y su movimiento alrededor del planeta terminaron por destruir la idea de que todos los objetos celestes deberían moverse alrededor del centro del universo.

Pero la pregunta obligada es ahora: ¿Qué es lo que hace mover los planetas?
La explicación física del movimiento planetario en la antigüedad era que los planetas y las esferas que los contenían estaban hechos de un elemento celeste perfecto que rotaba eternamente alrededor del centro del universo. El movimiento circular uniforme se consideraba natural. Pero un planeta moviéndose de acuerdo a las leyes de Kepler, cambiando su velocidad, dirección y curvatura en cada punto de su órbita, parecía requerir algún tipo de fuerza responsable de estos cambios. Kepler introdujo la noción de fuerzas originadas en el Sol y los planetas que proporcionaban la causa del movimiento planetario y de sus satélites. Las mismas estaban relacionadas con el magnetismo, cuyas propiedades habían sido recientemente descubiertas: la Tierra y los planetas eran para Kepler grandes imanes y las atracciones y repulsiones de los polos determinaban las trayectorias planetarias. Si bien estas ideas no prosperaron, la concepción kepleriana del sistema solar como un sistema autocontenido, tanto de sus componentes como de las causas de los movimientos de las mismas, resultó muy importante en los desarrollos sucesivos de las ideas cosmológicas.

En síntesis:
Primera Ley: Los planetas se mueven en órbitas elípticas con el Sol en uno de los focos.
Segunda Ley: El radio vector Sol-Planeta barre áreas iguales en tiempos iguales.
Tercera Ley: El cubo del semieje mayor es proporcional al cuadrado del período orbital.



Los Planetas y su descripción:


Mercurio:
Es el más pequeño de los planetas, prescindiendo de los asteroides, pues su diámetro llega a los 5.000 Km, apenas las 4 décimas partes del de la Tierra, y su volumen es 19 veces menor que el de ésta. La distancia media a que se halla el Sol es de 58.000.000 de km. Según las últimas investigaciones, este planeta tiene un movimiento de rotación que tarda 59 días terrestres, y su movimiento de traslación alrededor del Sol dura 88 días. Esto significa que el planeta gira sobre su eje, cada dos revoluciones en torno del Sol, mostrándonos casi la misma cara cada vez que se nos presenta en las más favorables condiciones de observación.
Observando sus manchas superficiales, se llegó a la conclusión de que el planeta mostraba siempre el mismo lado al Sol, esto es, que sería un caso similar al que presenta la Luna con respecto a la Tierra.
Esto hizo suponer que si giraba sobre su eje con el mismo período que el de traslación, Mercurio debía presentar distintas condiciones físicas: la cara iluminada por el Sol con elevadísimas temperaturas (estimadas en unos 4.500 grados Celsio sobre cero), donde las condiciones lógicas de vida son imposibles, y la otra cara permaneciendo eternamente en las tinieblas, con temperaturas de 210 grados centígrados bajo cero, lo que sería muy próximo al cero absoluto. Esto significaría que Mercurio tendría las temperaturas más altas, por un lado, y las más bajas, por otro, del sistema planetario.
Algunos científicos piensan que el núcleo de Mercurio tiene a la 4/5 parte de su masa total, siendo así del mismo tamaño que la Luna. Está formado por hierro y níquel. En la corteza de Mercurio hay externas regiones compuestas por silicato, a muy altas temperaturas.

Venus:
Es el segundo planeta interior, que se nos aparece frecuentemente constituyendo el hermoso lucero.
Este planeta, cuyo tamaño y masa son los más parecidos a los de la Tierra, está envuelto en una atmósfera demasiado densa, que no permite distinguir con nitidez su superficie. Hace unos años, se ha logrado establecer que Venus gira sobre su eje en un período que dura 243 días terrestres, pero gira como las agujas del reloj, en sentido contrario a la forma habitual de la mayoría de los planetas. Debido a la combinación de esta lenta rotación contraria, y los 255 días que tarda el planeta en cumplir su órbita en torno al astro rey, Venus ve aparecer al Sol en el oeste cada 117 días terrestres. Se halla a 108.000.000 de Km hacia el Sol. Está a 41.000.000 Km de la Tierra.

Tierra:
La Tierra no es perfectamente esférica, sino un elipsoide achatado, cuyo diámetro es diferente según el sitio donde se mida, siendo menor en los polos que en el ecuador. El diámetro más corto mide 12.640 Km, y corresponde al que une al polo norte y el polo sur. El diámetro ecuatorial (perpendicular en el punto medio del anterior) tiene una longitud de 12.683 Km
Se sabe que nuestro globo está formado por una corteza sólida de relieve accidentado, que no alteran la forma general del elipsoide. También está constituido por un manto rocoso, y frágil en su parte más cercana a la corteza. Esta capa influye en el movimiento de las placas continentales. Luego del manto, viene el núcleo externo, que está compuesto por hierro y níquel, este núcleo se encuentra en estado líquido. Su ancho es de 4.600 Km
Más adentro de la Tierra se encuentra el núcleo interno que está integrado por hierro y níquel; distinto que el núcleo externo, se encuentra en estado sólido. Su radio mide 1.250 Km
La Tierra está animada de dos movimientos principales: uno de rotación sobre su eje, y otro de traslación alrededor del Sol. En virtud del primero, si consideramos un lugar determinado de la superficie terrestre, unas veces estará recibiendo los rayos solares, mientras que la otra quedará sumergida en la sombra propia del planeta; esto da lugar a la sucesión de los días y las noches. También se llama día al tiempo que tarda en dar una vuelta completa sobre su eje, unidad que se divide en veinticuatro horas.
El plano en que está situada en órbita de la Tierra, o plano de la eclíptica, no coincide con el plano del ecuador terrestre, sino que forma con él un ángulo de veintitrés grados y veintisiete minutos, que se llama oblicuidad de la eclíptica. Si no existiera esa oblicuidad, es decir, si el eje de rotación de la Tierra fuera perpendicular al plano de la eclíptica, los lugares próximos al ecuador recibirían los rayos solares verticalmente, mientras que a los situados cerca de los polos llegarían muy oblicuos, lo que originaría los distintos climas, cálidos los primeros, y fríos los segundos, pero en todos ellos el día y la noche tendría la misma duración de doce horas cada uno, cualquiera que fuese la posición de la Tierra en su órbita. Más por efecto de dicha oblicuidad de la eclíptica, el eje terrestre está inclinado respecto de ella, por cuyo motivo, cuando la Tierra está en determinada posición, el hemisferio boreal recibirá los rayos con menos inclinación que el austral, los días se harán en aquél más largos que las noches, y cuanto más nos acerquemos al polo, en proximidad el día durará veinticuatro horas, es decir no será nunca noche. En el hemisferio sur sucederá lo contrario: las noches serán más largas, y las cercanías del polo estarán siempre sumergidas en la sombra.
Será pues, verano, en el hemisferio boreal e invierno en el austral. En cambio la Tierra se halla en sentido opuesto, cambiarán los papeles, recibiendo más calor la porción del sur, donde será verano, e invierno en el norte. En las posiciones intermedias, los días tendrán igual duración que las noches en todo el globo, y será primavera en un hemisferio y otoño en otro.

Marte:
Es el cuarto planeta del sistema solar, cuyo color rojizo le ha hecho simbolizar al dios de la guerra. Su movimiento aparente, tal como lo vemos difiere por completo de los dos interiores (Mercurio y Venus); éstos pasan a veces entre el Sol y la Tierra, posición que llamamos conjunción inferior, mientras que Marte y los demás planetas exteriores nunca pueden hallarse en esas condiciones. En cambio llegan a estar en oposición, es decir, diametralmente opuestos al Sol. Los primeros oscilan a un lado y otro de él, y son visibles solamente pocas horas antes del amanecer o después de anochecer, mientras que los últimos pueden ocupar una posición cualquiera en el cielo y verse incluso a medianoche. Por la combinación del movimiento de este planeta con el de la Tierra, lo veremos unas veces trasladándose aparentemente entre las estrellas de oeste a este, quedar estacionario y volver a atrás, retrogradar, en las proximidades de la oposición; durante ésta la distancia del planeta a la Tierra es la diferencia de las que separan a cada uno de ellos del Sol, mientras que en la conjunción es la suma de ambas; por eso la distancia de Marte a nosotros puede variar de 54 a 398 millones de kilómetros, siendo la oposición la mejor época para observarlo.
El diámetro de Marte es aproximadamente la mitad del terrestre (6300 Km).
El movimiento de rotación de este planeta se verifica casi en el mismo tiempo que el del nuestro, y su eje está también inclinado sobre el plano de su órbita como el de la Tierra, por lo cual en el transcurso del año marciano, casi doble del terrestre, hay las mismas estaciones, que se aprecian perfectamente por la aparición y desaparición de grandes manchas blancas en sus polos, llamados casquetes polares. En el resto de su superficie se distinguen otras manchas claras y oscuras.
Marte tiene dos satélites, dos pequeñas lunas, que han sido llamadas Fobos y Deimos. El primero apenas mide cinco Km de diámetro, y se mueve alrededor del planeta con tal rapidez que lo circunda en siete horas y media, tiempo menor que el día marciano, por lo que el satélite, para un observador situado en Marte, aparece por occidente (oeste) y se oculta por oriente (este).
Más allá de Marte circula un enjambre de pequeños planetas o asteroides, ninguno se puede ver a simple vista, y muchos de ellos está diminutos que ni siquiera con los más potentes anteojos pueden observarse, conociéndose solo por el débil trazo que dejan en la placa fotográfica. Se halla a 228.000.000 Km del Astro Rey.

Júpiter:
Más allá del cinturón de asteroides se halla Júpiter, el coloso de nuestro Sistema Solar, el cual constituye uno de los más brillantes luceros que engalanan nuestras noches. Su diámetro, medido en el ecuador, tiene cerca de 150.000 kilómetros, once veces mayor que el de la Tierra, y su volumen equivale a unas 1.300 veces el de nuestro planeta. Presenta gran achatamiento, debido a la gran velocidad de su rotación, pues tarda solamente diez horas en dar la vuelta alrededor de su eje. Tarda unos doce años en describir su órbita en torno al Sol, y su distancia de éste es de 778.000.000 de kilómetros, o sea, casi cinco veces mayor al de la Tierra al mismo luminar, por lo cual recibe 27 veces menos calor y luz que nosotros. A pesar de esto, no se ha formado en Júpiter aún la corteza sólida, y su superficie presenta unas bandas paralelas a su ecuador, de aspecto nebuloso y mal definido. Hay, sin embargo, un detalle muy marcado, la mancha roja, situada en el hemisferio austral, y que podría ser el germen de un continente en formación. Tiene una atmósfera muy densa, compuesta principalmente por gases, como el hidrógeno, y otros venenosos como el amoníaco y metano. Estos gases se arremolinan en torno al planeta en turbulentas bandas de nubes de muchos miles de millas de profundidad.
Júpiter tiene dieciséis satélites: Metis, Adrastea, Amaltea, Tebe, Io, Europa, Ganímedes, Calisto, Leda, Himalia, Lisitea, Elara, Ananke, Carmen, Pasifae y Sínope. Los cuatro más brillantes, entre estas lunas, son: Ío, Europa, Ganímedes y Calisto. El satélite Ganímedes es mayor que Mercurio, Calisto más grande que la Luna, y Europa es una quinta parte del tamaño de la Tierra.
Los dos pequeños satélites más alejados de Júpiter son excepciones a la regla que rige las direcciones en que planetas y satélites describen sus órbitas, pues sus movimientos son retrógrados, o sea, de sentido contrario al de los demás satélites y al del mismo planeta.

Saturno:
Anillos de Saturno
Los anillos de Saturno son unas bandas muy anchas y muy planas constituidas por fragmentos de rocas, gas helado y hielo. Hay más de 110.000 bandas que giran formando los anillos que se ven con los telescopios desde la Tierra. Estos anillos tienen, aproximadamente, 4.800 Km de ancho. Las II captaron esta imagen desde una distancia de 8,9 millones de Km cuando, en 1981, pasó por este planeta.
Alejándonos del Sol todavía más, venimos a parar a Saturno, el planeta con el maravilloso sistema de anillos. Es, en varios respectos, como una edición un poco menor que el mayor, Júpiter, y las conclusiones alcanzadas en lo que conciernen caracteres físicos de Júpiter, son aplicables en lo principal a Saturno. Su globo es todavía más achatado que el de Júpiter, y además de estar rodeado por un cortejo de 18 satélites, se engalana con un sistema de anillos, situado en el plano del ecuador, y constituido, según las modernas investigaciones, por un número incalculable de pequeños cuerpos sólidos, que circulan sin cesar a su alrededor. Según la posición que ocupa el plano del anillo(cuyo espesor es probablemente de unos 70 kilómetros, pero que tiene cerca de 300.000 de diámetro máximo) con respecto al Sol y a nosotros, presentará diferentes aspectos, incluso el se una recta luminosa que atraviesa al planeta, hasta llegar a ser completamente invisible.
Por estar Saturno 10 veces más lejos del Sol que nosotros, recibe 100 veces menos calor y luz. El año saturniano equivale a veintinueve y medio de los nuestros, y su día dura solamente diez horas y cuarto.
Exploración del sistema de Saturno
Visto desde la Tierra, Saturno aparece como un objeto amarillento, uno de los más brillantes en el cielo nocturno. Observado a través de un telescopio, los anillos A y B se ven fácilmente, mientras que los D y E solamente se ven en condiciones atmosféricas óptimas. Telescopios de gran sensibilidad situados en la Tierra han detectado nueve satélites y en la niebla de la envoltura gaseosa de Saturno se distinguen pálidos cinturones y estructuras de bandas paralelas al ecuador.
Tres naves espaciales estadounidenses han incrementado enormemente el conocimiento del sistema de Saturno. La sonda Pioneer 11 fue lanzada en septiembre de 1979, seguida por el Voyager 1 en noviembre de 1980 y el Voyager 2 en agosto de 1981. Estas naves espaciales llevaban cámaras e instrumentos para analizar las intensidades y polarizaciones de la radiación en las regiones visibles, ultravioleta, infrarroja y de radio del espectro electromagnético. Estas naves también estaban equipadas con instrumentos para el estudio de los campos magnéticos y para la detección de partículas cargadas y granos de polvo interplanetario

Urano:
El planeta Urano dista del Sol veinte veces más que la Tierra; a pesar de ser su diámetro cuatro veces mayor que el de ésta, aparece como una estrellita de sexta magnitud. Ha sido imposible determinar el tiempo que invierte en dar una vuelta sobre su eje, que se supone en algo más de 10 horas. Urano gira en torno al Sol con su eje inclinado a solamente 8 grados del plano de su órbita, en lugar de ser casi vertical como los otros planetas. De este modo, al recorrer su órbita en 84 días terrestres, un polo estará expuesto al Sol durante 42 años, y después permanecerá 42 años en la fría oscuridad

Neptuno:
Se nos presenta bajo la forma de una estrella de octava magnitud, completamente invisible a simple vista. Su diámetro es aproximadamente igual al de Urano, y su distancia del Sol es treinta veces mayor que la Tierra, por lo que recibe mil veces menos calor y luz. Tarda ciento sesenta y cinco años en recorrer su órbita. Nada se sabe de su tiempo de rotación, y sí sólo que su eje está también muy inclinado. Tiene 8 satélites, de los cuales los dos más importantes se llaman Nereida y Tritón, uno de ellos gira en sentido retrógrado.
Grandes cantidades de gas metano proporcionan al planeta su coloración azul. El metano agrega también nubes blancas y finas a la atmósfera del planeta. Algunas partes de los tres anillos de Neptuno lucen más brillantes que otras debido a la distribución desigual de las partícula
Plutón:
Plutón:
Por último encontramos al lejano Plutón, el más distante de los planetas, descubierto a comienzos de 1930. Debido a su pequeñez y a su gran distancia, muy poco se sabe de él, excepto que su órbita en torno al Sol es de una duración de 247 años terrestres, y su rotación de algo más de seis días(deducido por la fluctuación de la luz). Se supone que su tamaño no es mayor que Marte, y su consistencia es sólida, no gaseosa. Tiene una órbita muy excéntrica y se desplaza a un ángulo de 17 grados de la eclíptica.
La extraña órbita de este planeta y su pequeño tamaño significan que probablemente no sea un planeta real sino un asteroide grande que puede haber escapado de órbita. Plutón posee su propio satélite, Caronte, que tiene casi la mitad del diámetro del planeta.


Péndulo


Llamamos péndulo a todo cuerpo que puede oscilar con respecto de un eje fijo.
Péndulo ideal, simple o matemático: Se denomina así a todo cuerpo de masa m (de pequeñas dimensiones) suspendido por medio de un hilo inextensible y sin peso. Estas dos últimas condiciones no son reales sino ideales; pero todo el estudio que realizaremos referente al péndulo, se facilita admitiendo ese supuesto .
Péndulo físico: Si en el extremo de un hilo suspendido sujetamos un cuerpo cualquiera , habremos construido un péndulo físico. Por esto, todos los péndulos que se nos presentan (columpios, péndulo de reloj, una lámpara suspendida, la plomada) son péndulos físicos.
Oscilación - Amplitud - Período y Frecuencia:
A continuación estudiaremos una serie de procesos que ocurren durante la oscilación de los péndulos y que permiten enunciar las leyes del péndulo.
Daremos previamente los siguientes conceptos:
Longitud del péndulo (l) es la distancia entre el punto de suspensión y el centro de gravedad del péndulo.
Oscilación simple es la trayectoria descrita entre dos posiciones extremas (arco AB).
Oscilación completa o doble oscilación es la trayectoria realizada desde una posición extrema hasta volver a ella, pasando por la otra extrema (arco ABA). Angulo de amplitud o amplitud (alfa) es el ángulo formado por la posición de reposo (equilibrio) y una de las posiciones extremas.
Período o tiempo de oscilación doble (T) es el tiempo que emplea el péndulo en efectuar una oscilación doble.
Tiempo de oscilación simple (t) es el tiempo que emplea el péndulo en efectuar una oscilación simple.
Elongación (e). Distancia entre la posición de reposo OR y cualquier otra posición.
Máxima elongación: distancia entre la posición de reposo y la posición extrema o de máxima amplitud.
Frecuencia (f). Es el número de oscilaciones en cada unidad de tiempo.
f=numero de oscilaciones/tiempo
Relación entre frecuencia y periodo
T = período ; f = frecuencia
Supongamos un péndulo que en 1 seg. cumple 40 oscilaciones.
En consecuencia: 40 oscilaciones se cumplen en 1 seg., por lo que 1 osc. se cumple en T=1/40 seg (periodo) .
Obsérvese que: el período es la inversa de la frecuencia.
En símbolos: T=1/f y f=1/T

Leyes del péndulo:

Ley de las masas
Suspendamos de un soporte (por ejemplo: del dintel de una puerta) tres hilos de coser de igual longitud y en sus extremos atemos sendos objetos de masas y sustancias diferentes . Por ejemplo: una piedra, un trozo de hierro y un corcho. Saquémolos del reposo simultáneamente. Verificaremos que todos tardan el mismo tiempo en cumplir las oscilaciones, es decir, que todos “van y vienen” simultáneamente. Esto nos permite enunciar la ley de las masas:

LEY DE MASAS: Las tres mas de la figura son distintas entre si, pero el periodo (T) de oscilación es el mismo. (T1=T2=T3)
Los tiempos de oscilación de varios péndulos de igual longitud son independientes de sus masas y de su naturaleza, o también El tiempo de oscilación de un péndulo es independiente de su masa y de su naturaleza.

Ley del Isócrono: Dispongamos dos de los péndulos empleados en el experimento anterior. Separémolos de sus posiciones de equilibrio, de tal modo que los ángulos de amplitud sean distintos (pero no mayores de 6 o 7 grados).
Dejémolos libres: comienzan a oscilar, y notaremos que, también en este caso, los péndulos “van y vienen” al mismo tiempo. De esto surge la llamada Ley del isocronismo (iguales tiempos):
Para pequeños ángulos de amplitud, los tiempos de oscilación de dos péndulos de igual longitud son independientes de las amplitudes, o también: El tiempo de oscilación de un péndulo es independiente de la amplitud (o sea, las oscilaciones de pequeña amplitud son isócronas).
La comprobación de esta ley exige que los pendulos tengan la misma longitud para determinar que en efecto los péndulos son isocronos*, bastarà verificar que pasan simultáneamente por la posiciòn de equilibrio. Se llegara notar que las amplitudes de algunos de ellos disminuyen mas que las de otros, pero observaremos que aquella situaciòn —el isocronismo— subsiste.
Si disponemos de un buen cronometro, podemos aun mejorar los resultados de esta experimentaciòn. Procedemos a tomar los tiempos empleados por cada uno, para 10 o 100 oscilaciones. Dividiendo esos tiempos por el número de oscilaciones obtendremos el de una sola (en casos de mucha precisiòn se llegan a establecer tiempos para 1.000, lo que reduce el error por cada oscilaciòn De este modo puede verificarse que en rea1id~ se cumple la ley. (*) lsòcronos tiempos iguales.

Ley de las longitudes:
Suspendamos ahora tres péndulos cuyas longitudes sean:
Péndulo A = (10cm) 1 dm.
Péndulo B = (40 cm) 4 dm.
Péndulo C = (90 cm) = 9 dm.


Procedamos a sacarlos del reposo en el siguiente orden:
1) El de 1 dm. y el de 4dm.
2) El de 1 dm. y el de 9dm.

Observaremos entonces que:
a) El de menor longitud va más ligero que el otro, o sea: “a menor longitud menor tiempo de oscilación y a mayor longitud mayor tiempo de oscilación”.
b) Mientras el de 4 dm. cumple una oscilación, el de 1 dm. cumple dos oscilaciones.

c) Mientras el de 9 dm. cumple una oscilación, el de 1 dm. cumple tres oscilaciones.

Esta circunstancia ha permitido establecer la siguiente ley de las longitudes:
Los tiempos de oscilación (T) de dos péndulos de distinta longitud (en el mismo lugar de la Tierra), son directamente proporcionales a las raíces cuadradas de sus longitudes.
En símbolos

T1 y T2: tiempos de oscilación;
l1 y l2 : longitudes.
Ley de las aceleraciones de las gravedades: Al estudiar el fenómeno de la oscilación dejamos aclarado que la acción gravitatoria tiende a hacer parar el péndulo, pues esa es la posición más cercana a la Tierra. Significa esto, en principio, que la aceleración de la gravedad ejerce una acción primordial que evidentemente debe modificar el tiempo de oscilación del péndulo.
Si tenemos presente que la aceleración de la gravedad varía con la latitud del lugar, resultará que los tiempos de oscilación han de sufrir variaciones según el lugar de la Tierra.
En efecto, al experimentar con un mismo péndulo en distintos lugares de la Tierra (gravedad distinta) se pudo comprobar que la acción de la aceleración de la gravedad modifica el tiempo de oscilación del péndulo.
Por ejemplo: si en Buenos Aires el tiempo de oscilación es T1, y la gravedad g1, en Río de Janeiro el tiempo de oscilación es T2 y la gravedad g2, se verifica la siguiente proporcionalidad:

Repitiendo los experimentos para lugares de distinta latitud (por tanto, distinta gravedad) se puede verificar proporcionalidad semejante. De lo cual surge el siguiente enunciado de la Ley de las aceleraciones de la gravedad:
Los tiempos de oscilación de un mismo péndulo en distintos lugares de la Tierra son inversamente proporcionales a las raíces cuadradas de las aceleraciones de la gravedad.
Fórmula del tiempo de oscilación del péndulo:
Para poder obtener el tiempo de oscilación de un péndulo se aplica la siguiente expresión:

t: tiempo de oscilación;
l: longitud de péndulo;
g: aceleración de la gravedad.
que equivale al período o tiempo de oscilación completa.
Si fuera el correspondiente para una oscilación simple, aplicamos:

Esta fórmula condensa en sí las cuatro leyes del péndulo. En efecto, observamos:
1) En esa expresión no figura la masa m del péndulo, por lo que “el tiempo de oscilación es independiente de la masa”.
2) Como tampoco figura el ángulo de amplitud, “el tiempo de oscilación es independiente de la amplitud”.
3) La 3ra. y 4ta. leyes están incluidas en el factor:

,es decir: "los tiempos de oscilación son directamente proporcionales a las raíces cuadradas de las longitudes e inversamente proporcionales a la de las aceleraciones de las gravedades”.
Péndulo que bate el segundo:
De la expresión:

(tiempo de oscilación simple) resulta que el tiempo de oscilación depende de la longitud y de la aceleración de la gravedad.
Si en determinado lugar (g: conocida) deseamos construir un péndulo cuyo tiempo de oscilación sea un segundo, tendremos que modificar su longitud.
Ello se logra aplicando la expresión:

luego:

y

De este modo para t=1 seg. se logra un péndulo que “bate el segundo”. Por ello decimos:
Péndulo que bate el segundo es aquel que cumple una oscilación simple en un segundo.
Para el lugar cuya aceleración de la gravedad es normal (g=9,806) la longitud del péndulo que bate el segundo es 0,9936 m, mientras que para el que cumple una oscilación doble en un segundo será l= 24,84 cm.
Caracterìsticas del movimiento del péndulo - Fuerzas que actúan:
Supongamos el péndulo en la posición de equilibrio AM (Fig. izquierda). El peso P es anulado por la reacción del hilo y no hay oscilación. Consideremos la posición OA, procedamos a descomponer la fuerza peso P, según las direcciones m y n. Obtendremos las fuerzas F1 y F’. La fuerza F’ queda anulada por la reacción del hilo. (Fig. abajo)
En consecuencia, en el punto A actúa solamente la fuerza F1, tangente al arco AMB y que provoca el movimiento del péndulo hacia M.
Si en el punto A’ efectuamos el mismo proceso de descomposición de la fuerza (P) peso, observaremos que F2 es menor que F1 obtenida anteriormente.
Resulta entonces que, a medida que a medida que, el péndulo se acerca a su posición de equilibrio OM la fuerza que provoca el movimiento disminuye hasta hacerse cero en el punto M (peso y reacción se anulan).

A pesar de ello, el péndulo continúa oscilando. Ello se debe a la inercia que posee. Si durante este movimiento actúa una fuerza F1, F2, etc., el movimiento es acelerado (no uniformemente acelerado).
Cuando el péndulo pasa al punto M, el peso del cuerpo actúa como fuerza negativa, es decir, el movimiento es retardado. Así llegará a un punto B en que su velocidad se anula, y no sube más (caso análogo al del cuerpo lanzado
hacia arriba al alcanzar su altura máxima). En ese momento el proceso se invierte, repitiéndose en sentido contrario, es decir, de B hacia M, continuando hasta A.
En síntesis:
1) En A, la fuerza F1 hace desplazar al péndulo hasta M (movimiento acelerado).
2) En M péndulo debiera quedar en reposo, pero por inercia continúa con movimiento retardado pues va en contra de la fuerza gravitatoria.
3) En B, la velocidad del péndulo se ha anulado (y = 0). En ese instante se invierte el movimiento y se desplaza hacia M. El péndulo continúa oscilando y cumpliendo el mismo proceso.
En consecuencia:
a) La fuerza que hace mover al péndulo no es constante.
b) La dirección y sentido de esas fuerzas son tales, que tienden a que el pendulo adquiera la posición de equilibrio
c) Como la fuerza F1 no es constan te, la aceleración tangencial no es constante. Su dirección y sentido cambian instante por instante.
d) La velocidad tangencial se anula en los puntos extremos y no es constante. Es máxima al pasar por la posición de reposo. El movimiento del pénd
Por lo tanto: ulo es variado.
Resulta alternativamente acelerado y retardado una vez cumplida cada oscilación simple y como la aceleración no es constante no es uniformemente variado.
Càlculo de la fuerza F:
Se puede demostrar matemáticamente que la fuerza F se puede calcular mediante la expresión:

donde:
P: peso del péndulo;
l: longitud del péndulo;
e: máxmia elongación.
El péndulo y sus aplicaciones:
Las aplicaciones del péndulo son variadas. Las más importantes son:
a) Determinación de la aceleración de la gravedad.
Sabemos que:

Elevando al cuadrado miembro a miembro es:

y despejando g, es:

en esta igualdad es: numero pi (constante=3.1415), y l: medible fácilmente, T: se determina con un buen cronómetro.
Por lo que esta ultima expresión nos permite calcular con relativa facilidad la aceleración de la gravedad en un lugar determinado.
Esto constituye la aplicación científica de mayor importancia del péndulo. Para estas determinaciones se emplean péndulos reversibles, es decir, péndulos que pueden oscilar primero alrededor de un eje y después alrededor de otro. Colocado de tal modo que en cada una de esas posiciones el péndulo posea la misma longitud, y por lo tanto las oscilaciones son isócronas (igual tiempo de oscilación).
Así se logran valores de gran precisión. Se debe tener en cuenta en estas determinaciones la temperatura, amplitud de las oscilaciones y las influencias del rozamiento del aire y del soporte del péndulo.
El método de medición de g, con el péndulo, lo imaginó y expresó Huygens, y fue aplicado por el físico matemático Borda.
b) Determinación del movimiento de rotación de la Tierra.
Si disponemos de un péndulo suspendido de un alambre como indica la figura, y procedemos a sacarlo de su posición de equilibrio, observaremos que el plano de oscilación del péndulo no varía al girar el alambre sostén.
Por tanto: El plano de oscilación de un péndulo se mantiene invariable al modificarse la posición del “plano sostén”. (figura abajo)


Foucault
, haciendo uso de esa propiedad, pudo demostrar la existencia del movimiento de rotación de la Tierra. Empleó un péndulo que constaba de una esfera de cobre de 25 kilogramos provista de un fiel y suspendida de la cúpula del Panteón (París) por medio de un alambre de acero de 79 m de largo.
En el suelo dispuso una capa de arena húmeda en la cual el fiel de la esfera pendular marcaba los trazos de sus oscilaciones.
Así se pudo ver que, a medida que transcurría el tiempo, esas marcas se iban modificando. Como el plano de oscilación es constante, significaba ello que lo variable era el plano del soporte, es decir, el Panteón o, lo que es igual, la Tierra. En realidad, este experimento puede realizarse en una sala ordinaria con péndulo más corto.
J. BI. Foucault: Físico francès, nacido y muerto en París (1819-68). Entre sus trabajos recordamos la invención del giroscopio, con el que puede determinarse la dirección del meridiano del lugar sin necesidad de la observación astronc5mica, el método para calcular la velocidad de la luz en el aire y en el agua, así como la demostración del movimiento de rotaciòn de la Tierra valiendose del pendulo.
c) Medición del tiempo: Huygens fue quien ideó un mecanismo para poder medir el tiempo. Sabemos que, para determinada longitud, el péndulo cumple una oscilación simple en un segundo. Por tanto, dando a un péndulo esa longitud, nos indicará, para cada oscilación, un tiempo igual a un segundo.
En otras palabras, si construimos un péndulo que efectúe en un día solar medio 86.400 oscilaciones, cada una de éstas nos indica un segundo. Un péndulo que reúna estas condiciones, aplicado a un mecanismo motor (cuerda o pesas, que harán mover el péndulo) y a un sistema destinado a contar las oscilaciones, o sea, los segundos, constituye un reloj de péndulo.(figura izquierda)
En los relojes portátiles (de bolsillo, despertadores, etc.) el péndulo está reemplazado por el volante (rueda) que produce el movimiento oscilatorio del péndulo.
Cristian Huygens: Matemático y astrónomo holandéss (1629-1695). Fue un verdadero genio de su siglo. Inventa el reloj de pèndulo, y luego, el resorte espiral, para los de bolsillo. Enunciò la teoría ondulatoria de la luz, esbozó’ lo que hoy llamamos teorema de las fuerzas vivas; haciendo girar una esfera de arcilla, dedujo que la Tierra no podía ser esferica.

PENDULO DE TORSION Y DE TRACCION:

Péndulo de torsión
Llamamos péndulo de torsión al dispositivo formado por un alambro MN, sujeto por uno de sus extremos —M— a un punto fijo y el otro extremo N unido a una barra AB que a su vez termina en dos esferas.
Torsión: Fenómeno que se produce al aplicar al extremo de un cuerpo una cupla, mientras el otro extremo está fijo. También puede producirse torsión al aplicar simultáneamente un par de cuplas en cada uno de sus extremos. El péndulo de torsión permite calcular el momento de una fuerza F perpendicular al eje de torsión (alambre MN).

Factores que determinan su perìodo o frecuencia:
Apliquemos a los extremos de la barra AB la cupla F1=F2. La barra AB pasaría a la posición A’B’ girando un ángulo a y el alambre sufre una determinada torsión. Liberada la barra AB de esa cupla, el alambre tiende a volver a su posición primitiva debido a la existencia de fuerzas elásticas recuperadoras. En estas condiciones la barra AB comienza a oscilar como un verdadero péndulo físico.
Si deseamos detener al péndulo en el momento que forma el ángulo a será necesario aplicar una fuerza que anule la torsión del alambre. Esta fuerza será mayor o menor según sea el punto de aplicación respecto del centro de giro (respecto del alambre).
Puede verificarse que la intensidad de esta fuerza es la misma que hubiéramos necesitado para que desde la posición de reposo la barra AB formara el ángulo de torsión alfa.
De lo expuesto surge que todo depende del momento de la fuerza aplicada (fuerza por distancia).
Se puede comprobar que entre el momento de la fuerza aplicada y el ángulo de torsión a determinado, se cumple la siguiente relación:

En el péndulo de torsión, se cumple:
El tiempo de oscilación es independiente del ángulo de amplitud.
El tiempo de oscilación se calcula mediante la expresión:(*)

(*):Para el péndulo físico es:

(Para ángulos pequeños: P.d=K)
Similar a la del péndulo físico en la cual es
I: momento de inercia respecto al eje (hilo);
K:constante que resulta del cociente entre M y alfa.

Péndulo de tracción:
Elasticidad por tracción: Es el fenómeno producido por fuerzas que provocan el aumento de longitud de un cuerpo.

Sea el alambre a sujeto por un extremo M, y en el otro extremo, un platillo. Si sobre éste colocamos una pesa P, cualquiera, se provocará una fuerza que permitirá verificar un estiramiento o aumento de longitud del alambre. El dispositivo descripto constituye un péndulo de tracción.
Repitamos el experimento variando los pesos y observaremos que a mayor fuerza (peso) se verifica mayor estiramiento. Como es natural pensar, hay ciertos valores para la carga o fuerza F aplicada, en que los estiramientos dejan de ser proporcionales a esas fuerzas.
Existe entonces una tensión (fuerza aplicada) máxima para la cual se produce el estiramiento que permite recobrar al cuerpo su longitud inicial una vez desaparecida esa tensión. Las fuerzas elásticas recuperadoras tienden a llevar al cuerpo —alambre— a su posición o longitud primitiva.
Se produce así un movimiento oscilatorio que tiene un determinado período, que puede calcularse mediante la expresión:

Formula similar a la estudiada inicialmente para un péndulo de longitud l.


Fuerza

El término de fuerza es uno de los conceptos fundamentales sobre el que se basa la física actual. Las fuerzas son magnitudes vectoriales que, además de tener magnitud, tienen dirección y sentido; por lo tanto:
Si actúan varias a la vez sobre un cuerpo se han de aplicar, para su composición, las reglas de suma de vectores para hallar la resultante total (fuerza total o resultante) que actúa sobre el cuerpo. Si esta resultante es cero, se dice que las fuerzas están equilibradas, y, en consecuencia, el cuerpo permanecerá en reposo o siguiendo su anterior estado de movimiento (estática).
Si la resultante es distinta de cero, el movimiento del cuerpo se verá acelerado en la misma dirección y sentido de la fuerza resultante.
Si los cuerpos no pueden considerarse puntuales, la fuerza resultante, cuando no se aplique en el centro de masas del cuerpo, dará también lugar a la aparición de un movimiento de rotación.
Si una fuerza igual actúa sobre dos objetos de diferente masa, el objeto con mayor masa resultará menos acelerado.
Al conjunto de fuerzas que actúan sobre un cuerpo se le llama sistema de fuerzas. Si las fuerzas tienen el mismo punto de aplicación se habla de fuerzas concurrentes. Si son paralelas y tienen distinto punto de aplicación se habla de fuerzas paralelas.
Las fuerzas aparecen siempre entre los objetos en pares de acción y reacción iguales y opuestas, pero que nunca se pueden equilibrar entre sí puesto que actúan sobre objetos diferentes.
Esta acción mutua no siempre se ejerce entre dos objetos en contacto. En muchas ocasiones parece tener lugar "a distancia"; éste es el caso de un objeto atraído por la Tierra (campo gravitatorio terrestre), y viceversa, con una fuerza que es el peso del objeto.
La medición de las fuerzas se realiza por la de las deformaciones que producen en un cuerpo elástico (como el dinamómetro) o por medición directa de las aceleraciones que provocan en un cuerpo; esta última siempre tendrá un error mayor, debido a los rozamientos que frenan los cuerpos y que están presentes en todas las experiencias.
Las unidades en que clásicamente se miden las fuerzas son, en el Sistema Internacional, el N (newton); en el CGS la unidad de fuerza es la Dyna (dyn) = 10-5 N y en el terrestre es el kilopondio (kp) = 9,80655 N.

sábado, 27 de junio de 2009

Astros y Partículas: sus Movimientos - Silvana C. - 1ºCuat.-2009



Enseñanza de las Ciencias Naturales 1
Movimientos Simples y Movimientos Planetarios

Silvana C. - 1º Cuatrimestre - 2009

I. Movimientos simples

a) Conceptos generales
b) Criterios de clasificación.
c) Tipos.
d) Ejemplos.
e) Gráficos.


El movimiento es un fenómeno físico que se define como todo cambio de posición que experimentan los cuerpos en el espacio, con respecto al tiempo y a un punto de referencia, variando la distancia de dicho cuerpo con respecto a ese punto o sistema de referencia, describiendo una trayectoria. Para producir movimiento es necesaria una intensidad de interacción o intercambio de energía.
La trayectoria es la línea imaginaria que describe la partícula en su movimiento. Puede adoptar diferentes formas, conforme el movimiento que realice. Podemos diferenciar algunas de las formas que adoptan, y clasificar los movimientos de acuerdo a la trayectoria seguida por la partícula: si la trayectoria es rectilínea se le denomina movimiento rectilíneo, si es circular, movimiento circular. Entre otros, se pueden clasificar en:

Movimiento rectilíneo (M.R): Es el movimiento producido en una trayectoria que describe una línea recta, sin que el móvil cambie de dirección mientras se está moviendo.

Movimiento circular (M.C.) : Es el movimiento producido en una trayectoria circular, en la que el móvil se mueve alrededor de un punto, y siempre a la misma distancia de él, dibujando un círculo. En el Movimiento curvilíneo, el punto describe una curva cambiando su dirección a medida que se desplaza. En estos casos: el modulo del vector posición permanece constante y el espacio recorrido por el móvil es siempre un arco de circunferencia.

Movimiento parabólico: El móvil describe una trayectoria parabólica, es decir, una curva geométrica en forma de parábola. Esta compuesto por la conjunción de un movimiento uniforme y otro uniformemente acelerado.

Los móviles o partículas se desplazan. Al cambio de la posición de la partícula se le denomina desplazamiento ( Ar ). El desplazamiento no depende de la trayectoria seguida por la partícula, sino del punto de partida y del punto de llegada.
El desplazamiento es el cambio de posición que ocupa un cuerpo entre dos instantes determinados de tiempo. Es la diferencia vectorial entre el vector posición final y el vector posición inicial que da como resultado, otro vector:
En el desplazamiento se pueden involucrar conceptos como velocidad y/o aceleración,
La velocidad, la tasa de variación de la posición, se define como la razón entre el desplazamiento experimentado (desde la posición x1 hasta la posición x2) y el tiempo transcurrido.
v = (x2 - x1) / ( t2 - t1 ) v = Ax/At
Se define como aceleración a la variación de la velocidad con respecto al tiempo. La aceleración es el cambio de la velocidad sobre el tiempo en que se produce. La aceleración tiene magnitud, dirección y sentido, y se mide en m/s ², gráficamente se representa con un vector.
a = Av/At
La aceleración media es el cambio en la velocidad instantánea, Av , dividido por el intervalo de tiempo, At : a = Av / At

En este sentido, hay que destacar que existen, entonces, diferentes tipos de movimiento, conforme la trayectoria, en los que se distinguen la influencia de la velocidad y/o aceleración y si estas se mantienen constantes o varían.
Movimiento uniforme: La velocidad de movimiento es constante.
Movimiento uniformemente variado: La aceleración es constante (si es negativa retardado, si es positiva acelerado).
Movimiento variado: La aceleración o velocidad varía en el tiempo. No son constantes. Todo depende de como cambia la velocidad, aceleración o posición con respecto al tiempo. Por ejemplo: la aceleración es variable con respecto al tiempo, con lo que la velocidad y posición varían de maneras muy distintas.
Movimiento oscilatorio: Son los movimientos periódicos en los que la distancia del móvil al centro, pasa alternativamente por un valor máximo y un mínimo. El punto de máxima separación (coincide con el valor de mínima velocidad) y un mínimo en el centro (máxima velocidad).

Podemos decir entonces, que del análisis de lo expresado, los movimientos pueden clasificarse por sus formas de trayectoria y sus modos de movilizarse. Resultando los siguientes tipos de movimientos:

MOVIMIENTO RECTILÍNEO UNIFORME: El movimiento rectilíneo describe una trayectoria recta y es uniforme cuando la velocidad es constante, por lo tanto, la aceleración es cero o nula. El móvil se desplaza en una sola dirección con una rapidez constante sobre una trayectoria recta. Si la velocidad es constante, la velocidad media (o promedio) es igual a la velocidad en cualquier instante determinado. La gráfica que representa la trayectoria de dicho movimiento es siempre una recta.



EJEMPLO TRABAJADO EN CLASE (M.R.U.):



MOVIMIENTO RECTILÍNEO UNIFORMEMENTE VARIADO (MRUV) o Movimiento rectilíneo uniformemente acelerado (M.R.U.A.): un móvil se desplaza sobre una trayectoria recta con aceleración constante pero distinto de 0. El móvil no hace desplazamientos iguales en intervalos de tiempos iguales. En este movimiento permanece constante es la aceleración: es decir, el cambio de velocidad es el mismo para intervalos de tiempos iguales.
Las variaciones del vector velocidad en la unidad de tiempo son constantes, es decir la aceleración permanece constante. Dado que la velocidad no permanece constante pero sí sus variaciones podremos escribir:
En el movimiento uniformemente variado la velocidad varia y la aceleración es distinta de cero y constante. También puede definirse el movimiento MRUA como el seguido por una partícula que partiendo del reposo es acelerada por una fuerza constante.

EJEMPLO TRABAJADO EN CLASE (M.R.U.V.):


Para hallar la aceleración, resulta necesario trazar líneas que unan desde el punto inicial hasta el punto final pasando por todos las regiones de probabilidad experimental o intervalo de probabilidades experimentales (indicadas por un imaginario rectángulo alrededor de cada punto.). Resultando la línea media, de menor inclinación pendiente la apropiada.





MOVIMIENTO CIRCULAR UNIFORME (m.c.u.): Un movimiento circular uniforme es aquel en el que un cuerpo se desplaza alrededor de un punto central, cuya trayectoria en una circunferencia y el modulo de la velocidad es constante. Recorre arcos iguales en tiempos iguales. Un movimiento circular es uniforme si se efectúa con movimiento angular constante.

MOVIMIENTO CIRCULAR UNIFORMEMENTE ACELERADO (m.c.u.a.): Un movimiento circular uniforme es aquel en el que un cuerpo se desplaza alrededor de un punto central, cuya trayectoria en una circunferencia y la aceleración angular constante.

MOVIMIENTO OSCILATORIO: es un movimiento en torno a un punto de equilibrio estable, aquellos en los cuales la fuerza neta que actúa sobre la partícula es cero. Si el equilibrio es estable, pequeños desplazamientos darán lugar a la aparición de una fuerza que tenderá a llevar a la partícula de vuelta hacia el punto de equilibrio. Tal fuerza se denomina restauradora. Son movimientos periódicos en los que la distancia del móvil al centro, pasa alternativamente por un valor máximo y un mínimo, yendo de un lado hacia otro. Las separaciones a ambos lados, se llaman amplitudes y son iguales.
En términos sencillos e idealizados, puede definirse oscilación como un movimiento rectilíneo de vaivén que alcanza una cierta amplitud a ambos lados de un punto concreto, que es el que ocuparía la partícula si no se aplicara sobre ella la fuerza externa que la induce a oscilar. Este punto se denomina posición de equilibrio.

Dentro de esta categoría podemos encontrar los Movimiento vibratorio Armónico Simple: Los fenómenos vibratorios u oscilatorios están presentes en toda la naturaleza. Los péndulos formados por objetos que penden de hilos, los muelles que oscilan sujetos a un punto fijo, o fenómenos fisiológicos comunes, como el hecho de tiritar, son ejemplos frecuentes de este tipo de movimientos.
El movimiento de un péndulo es periódico, pues sus variables (su elongación, su velocidad y su aceleración) se repiten de forma constante tras un cierto tiempo. A este tiempo, "T", le llamamos período del péndulo.
Un péndulo simple consiste en una masa m sujeta a una varilla o un hilo que se entiende como indeformable y carente de masa y sujeta en la cima a un punto de apoyo.

Leyes del péndulo:

Ley de masas: Los tiempos de oscilación de varios péndulos de igual longitud son independientes de sus masas y de su naturaleza, o también El tiempo de oscilación de un péndulo es independiente de su masa y de su naturaleza.

Ley del Isócrono: Para pequeños ángulos de amplitud, los tiempos de oscilación de dos péndulos de igual longitud son independientes de las amplitudes, o también: El tiempo de oscilación de un péndulo es independiente de la amplitud (o sea, las oscilaciones de pequeña amplitud son isócronas).

Ley de las longitudes: Los tiempos de oscilación (T) de dos péndulos de distinta longitud (en el mismo lugar de la Tierra), son directamente proporcionales a las raíces cuadradas de sus longitudes.
Ley de las aceleraciones de las gravedades: Los tiempos de oscilación de un mismo péndulo en distintos lugares de la Tierra son inversamente proporcionales a las raíces cuadradas de las aceleraciones de la gravedad.






II. Movimiento de los planetas


Caracterización de los movimientos de los planetas. Los cometas. Tipos de movimientos. Teorías principales:

f) Geocéntrica: Teoría - Ilustración
g) Heliocéntrica: Teoría - Leyes de Kepler – Ilustración


Movimientos de los planetas: Los planetas, junto con los cometas, asteroides y satélites, forman parte del Sistema Solar. Estos se caracterizan por movimientos muy complejos que pueden ser estudiados, como en el caso de la Tierra, en movimientos más sencillos que, al reconstruirlos, pueden describir la realidad del movimiento observado.
Las leyes físicas que describen estos movimientos son las leyes de Kepler, que se desarrollaran mas adelante. Estas leyes son válidas tanto para los planetas como para los satélites en órbita alrededor de los planetas, los cometas, los grupos de meteoritos derivados de la desintegración de antiguos cometas y los asteroides.
Respecto de los movimientos podemos destacar que:
1. Todos los cuerpos del sistema solar, incluido el Sol, giran alrededor de su propio eje de rotación.
2. Todos los cuerpos del sistema solar giran alrededor del Sol siguiendo una órbita de trayectoria elíptica.
3. El eje de rotación de los planetas está inclinado respecto al plano de su órbita alrededor del Sol.
4. El sentido en el que giran los planetas es contrario a las agujas del reloj.
5. Las órbitas de los planetas no se hallan sobre el mismo plano. Cada planeta posee su plano orbital algunos están poco inclinados entre sí.
Los cometas (del latín cometa y el griego kometes, "cabellera") son cuerpos celestes que realizan orbitas elípticas alrededor del Sol, de gran excentricidad, en su mayoría, que produce su acercamiento al Sol con un período considerable. Son cuerpos sólidos constituidos por hielo y rocas, que desarrollan una atmósfera formada de gas y polvo, que envuelve al núcleo, llamada coma. Conforme el cometa se acerca al Sol, el viento solar azota la coma y se genera la cola o cabellera característica, formada por polvo y el gas de la coma ionizada.
En el caso particular de la Tierra podemos mencionar los siguientes movimientos:

Movimiento de rotación: Es un movimiento que efectúa la Tierra girando sobre sí misma a lo largo del Eje terrestre que pasa por sus polos formando un ángulo de 23º5. Esta inclinación produce largos meses de luz y oscuridad en los polos geográficos, además de ser la causa de las estaciones del año. Una vuelta completa, dura 23 horas con 56 minutos y 4 segundos y se denomina día sidéreo. Tomando como referencia al Sol, el mismo meridiano pasa frente a nuestra estrella cada 24 horas, y lo llamamos día solar. Este movimiento, determina el día y noche.

Movimiento de traslación: Es un movimiento por el cual la Tierra se mueve alrededor del Sol. La causa de este movimiento es la acción de la gravedad, originándose cambios que permiten la medición del tiempo: el año tropical, lapso necesario para que se repitan las estaciones del año; dura 365 días, 5 horas y 47 minutos. El Sol ocupa unos de los focos de la elipse y, debido a esta excentricidad, la distancia entre el Sol y la Tierra varía a lo largo del año. En enero se alcanza la máxima proximidad al Sol, perihelio, mientras que en julio se alcanza la máxima lejanía, afelio.

Movimiento de precesión: El movimiento es debido a que la Tierra no es esférica sino un elipsoide achatado por los polos. Es el cambio de la dirección del propio eje de rotación, alrededor del eje de giro en torno al Sol (traslación).

Movimiento de nutación: Es la oscilación periódica del polo de la Tierra alrededor de su posición media en la esfera celeste, debida a la influencia de la Luna sobre el planeta, similar al movimiento de una peonza (trompo) cuando pierde Energía y está a punto de caerse.



Teoría geocéntrica y heliocéntrica
La Teoría geocéntrica fue formulada por Aristóteles, sobre la base de distintas afirmaciones de la época, como ser que la Tierra era esférica, y completada por Ptolomeo. Estuvo en vigor hasta el siglo XVI, momento en que fue reemplazada por la teoría heliocéntrica.
En la antigüedad, Platón, sugería que la Tierra era una esfera ubicada en el centro del Universo. A su alrededor giraban en forma de círculo las estrellas y planetas, en el siguiente orden: Luna, Sol, Venus, Mercurio, Marte, Júpiter, Saturno, demás estrellas.
Aristóteles, siguiendo la línea de Platón, desarrolló la teoría Geocéntrica (geo: Tierra; centrismo: centro) que ubica a la Tierra en el centro del Universo y los astros, incluyendo el Sol, giran alrededor de ella.
Sin embargo, con esta teoría no podían explicar con claridad los esporádicos cambios de sentido en la trayectoria de los planetas. Fue Ptolomeo quien se ocupo de ello. En el sistema Ptolemaico, cada planeta es movido por dos o más esferas: una esfera es su deferente que se centra en la tierra, rota alrededor de la tierra y la otra esfera es el epiciclo que se encaja en el deferente, haciendo que el planeta se acerque y se aleje de la Tierra en diversos puntos en su órbita, inclusive haciendo que disminuya su velocidad, se detenga, y se mueva en el sentido contrario (en movimiento retrógrado).

En 1543 la teoría geocéntrica fue cuestionada por Copérnico, quien aseguraba que la Tierra y los demás planetas rotaban alrededor del Sol (Teoría heliocéntrica) en órbitas circulares. Para su estudio empleaba cálculos matemáticos que sustentaban su hipótesis.

Tiempo después, Kepler, astrónomo alemán (1571-1630), reformuló la teoría, sugiriendo que la trayectoria de los planetas no era circular, sino elíptica.
Sin embargo, el sistema geocéntrico se mantuvo varios años, ya que el sistema copernicano no ofrecía mejores predicciones de las efemérides cósmicas que el anterior, y además suponía un problema para la filosofía natural, así como para la educación religiosa.


Las hipótesis fundamentales de la Teoría Copernicana son:
1) El mundo (universo) es esférico. La Tierra también es esférica.
2) El movimiento de los cuerpos celestes es regular, circular y perpetuo, compuesto por movimientos circulares.
3) Se distinguen varios tipos de movimientos:
a. Movimiento diurno: la Tierra rota en 24 horas.
b. Movimiento anual del Sol: Causado por la traslación de la Tierra alrededor del Sol.
c. Movimiento mensual de la Luna alrededor de la Tierra.
4) El cielo es inmenso respecto a la magnitud de la Tierra.
5) El orden de las órbitas celestes.

Si bien no se puede considerar a Copérnico ni como descubridor del heliocentrismo ni como desarrollador verdadero de la teoría, sí cumplió una función crucial como inspirador para los científicos que le sucederían: Galileo Galilei, Johannes Kepler, Renèe Descartes e Isaac Newton René Descartes. En efecto con la invención del telescopio, Galileo realizo las primeras observaciones de los satélites (como el hecho de que Júpiter tuviese lunas) que constituyeron una prueba que cuestionaban el geocentricismo.
A fines del siglo XVII Tycho Brahe afirmaba que la Tierra era el centro del Universo y alrededor suyo giraba el Sol, pero todos los demás planetas giraban alrededor del Sol.
Johannes Kepler, después de analizar las observaciones de Tycho Brahe, construyó sus tres leyes, basado en una visión heliocéntrica donde los planetas se mueven en trayectorias elípticas siendo el sol uno de sus focos.

En 1687, Isaac Newton introdujo la ley de la gravitación universal afirmando que es la fuerza que atrae a las masas entre si, que mantiene a los planetas en movimiento y órbita, entendiendo a esta como la fuerza que hace que los objetos caigan con aceleración constante en la Tierra (gravedad terrestre) y que ésta fuerza aumenta cuanto mayores son las masas, disminuyendo cuanto más alejadas están entre si. Newton, extrajo de los escritos de Kepler la formulación matemática precisa de las leyes. Fue capaz de relacionar estas leyes con sus propios descubrimientos.

Leyes de Kepler
El astrónomo Kepler describió el movimiento planetario utilizando tres expresiones matemáticas conocidas como las leyes de movimiento planetario de Kepler. Estas fueron enunciadas para explicar el movimiento de los planetas en sus órbitas alrededor del Sol y se aplican a otros cuerpos celestes astronómicos que se encuentran en mutua influencia gravitatoria.


Primera Ley: Todos los planetas se desplazan alrededor del Sol describiendo órbitas elípticas, estando el Sol situado en uno de los focos.
Esquema de la Primera Ley de Kepler.

Segunda Ley: El radio vector que une el planeta y el Sol barre áreas iguales en tiempos iguales. Cuando el planeta está más alejado del Sol (afelio) su velocidad es menor que cuando está más cercano al Sol (perihelio).
El momento angular L es el producto de la masa del planeta, su velocidad y su distancia al centro del Sol. Esquema de la Segunda Ley de Kepler.


Tercera Ley: Para cualquier planeta, el cuadrado de su período orbital (P) (tiempo que tarda en dar una vuelta alrededor del Sol) es directamente proporcional al cubo de la distancia media con el Sol (r). K la constante de proporcionalidad.

viernes, 19 de junio de 2009

Enseñanza de las Ciencias Naturales I - Ana María S. - 1º Cuat. - 2009

Enseñanza de las Ciencias Naturales I

Movimiento de los planetas


Caracterización de los movimientos de los planetas.
Caracterización de los cometas. Tipos de movimientos

Principales Teorías:
• Geocéntrica: Teoría - Ilustración
• Heliocéntrica: Teoría - Leyes de Kepler – Ilustración

Movimientos sencillos


• Conceptos generales
• Criterios de clasificación.
• Tipos
• Ejemplos- Ilustración

Movimientos de los planetas

Movimientos de la Tierra

Movimiento de rotación
Denominamos así al movimiento que efectúa la Tierra girando sobre sí misma a lo largo de un eje denominado Eje terrestre que pasa por sus polos. Una vuelta completa, tomando como referencia a las estrellas, dura 23 horas con 56 minutos y 4 segundos (día sideral). Si tomamos como referencia al Sol, el mismo meridiano pasa frente a nuestra estrella cada 24 horas, llamado día solar, los 3 minutos y 56 segundos de diferencia se deben a que en ese plazo de tiempo la Tierra ha avanzado en su órbita y la Tierra debe de girar algo más que un día sideral para quedar frente al Sol.
Como se observa en el gráfico, el eje terrestre forma un ángulo de 23,5 grados respecto a la normal de la eclíptica, fenómeno denominado oblicuidad de la eclíptica. Esta inclinación produce largos meses de luz y oscuridad en los polos geográficos, además de ser la causa de las estaciones del año, causadas por el cambio del ángulo de incidencia de la radiación solar.


Movimiento de traslación
Se denomina de esta manera al movimiento por el cual la Tierra se mueve alrededor del Sol. La causa de este movimiento es la acción de la gravedad, originándose cambios que, al igual que el día, permiten la medición del tiempo. Tomando el Sol como referencia, resulta lo que denominamos año tropical, es el lapso necesario para que se repitan las estaciones del año; dura 365 días, 5 horas y 47 minutos. El movimiento que describe es una trayectoria elíptica de 930 millones de kilómetros a una distancia media del Sol de prácticamente 150 millones de kilómetros.
El Sol ocupa unos de los focos de la elipse y, debido a esta excentricidad, la distancia entre el Sol y la Tierra varía a lo largo del año. A primeros de enero se alcanza la máxima proximidad al Sol, produciéndose el perihelio, (147,5 millones de km de distancia), mientras que a primeros de julio se alcanza la máxima lejanía, denominado afelio (152,6 millones de km de distancia).


Movimiento de precesión
Este movimiento se efectúa debido a que la Tierra no es esférica sino un elipsoide achatado por los polos. Si la Tierra fuera totalmente esférica sólo realizaría los movimientos anteriormente descritos.

Movimientos de los cometas
Los cometas son cuerpos celestes constituidos por hielo y rocas que orbitan el Sol siguiendo órbitas muy elípticas. Los cometas, junto con los asteroides, planetas y satélites, forman parte del Sistema Solar. La mayoría de estos cuerpos celestes describen órbitas elípticas de gran excentricidad, lo que produce su acercamiento al Sol con un período considerable. Son cuerpos sólidos compuestos de materiales que se subliman en las cercanías del Sol, desarrollan una atmósfera que envuelve al núcleo, llamada coma. Esta coma está formada por gas y polvo. Conforme el cometa se acerca al Sol, el viento solar azota la coma y se genera la cola o cabellera característica. La cola está formada por polvo y el gas.
Debido a su pequeño tamaño y órbita muy alargada, solo es posible ver los cometas cuando están cerca del Sol y por un periodo corto de tiempo.

Teoría geocéntrica
Esta teoría fue elaborada por Platón en el siglo V a.c., la misma hacía referencia a la ubicación de la Tierra en el Universo. Coloca la Tierra en el centro del Universo y los astros, incluido el Sol, girando alrededor de ella (geo: Tierra; centrismo: centro).
Ampliando la teoría de Platón, la Tierra era una esfera que descansaba en el centro del Universo. Las estrellas y planetas giraban alrededor de la Tierra en círculos celestiales, ordenados en el siguiente orden (hacia el exterior del centro): Luna, Sol, Venus, Mercurio, Marte, Júpiter, Saturno, demás estrellas.


Teoría heliocéntrica
Esta teoría es la que sostiene que la Tierra y los demás planetas giran alrededor del Sol. El heliocentrismo fue propuesto en la antigüedad por el griego Aristarco de Samos (310 a.c. - 230 a.c.), se basó en medidas sencillas de la distancia entre la Tierra y el Sol, determinando un tamaño mucho mayor para el Sol que para la Tierra. Por esta razón, Aristarco propuso que era la Tierra la que giraba alrededor del Sol y no de modo inverso como comúnmente se aceptada en esa época y en los siglos siguientes.
En el siglo XVI, en el año 1543, la teoría volvería a ser formulada, esta vez por Copérnico. La diferencia fundamental entre la propuesta de Aristarco en la antigüedad y la teoría de Copérnico es que este último emplea cálculos matemáticos para sustentar su hipótesis. Precisamente a causa de esto, y a pesar de que su libro fue prohibido por la Iglesia Católica hasta 1835, durante casi tres siglos, sus ideas marcaron el comienzo de lo que se conoce como la revolución científica. No sólo un cambio importantísimo en la astronomía, sino en las ciencias en general y particularmente en la cosmovisión de la civilización.



Leyes de Kepler

Entre los años 1609 y 1619 se formulan las 3 leyes conocidas como las leyes de Kepler. Kepler llegó a la conclusión de que los planetas giran entorno al sol describiendo órbitas elípticas en vez de circulares y el sol se sitúa en uno de los focos de la elipse.

1° Ley de Kepler
Todos los planetas se desplazan alrededor del Sol describiendo órbitas elípticas, estando el Sol situado en uno de los focos.
Esquema:


2° Ley de Kepler
El radio vector que une el planeta y el Sol recorre áreas iguales en tiempos iguales. Cuando el planeta está más alejado del Sol (afelio)su velocidad es menor que cuando está más cercano al Sol (perihelio).
Esquema:


3° Ley de Kepler
Para cualquier planeta, el cuadrado de su período orbital, que es el tiempo en que tarda en dar una vuelta completa alrededor del Sol, es directamente proporcional al cubo de la distancia media con el Sol.

P= período orbital
R= la distancia media del planeta con el Sol
K= la constante de proporcionalidad
Esquema:



Movimientos Simples


Movimiento rectilíneo uniforme (MRU)
Se define que un movimiento es rectilíneo cuando describe una trayectoria recta y uniforme, cuando su velocidad (magnitud física que expresa la variación de posición de un objeto en función del tiempo) es constante en el tiempo, o sea cuando su aceleración es nula.
Podemos calcular la distancia recorrida multiplicando la velocidad por el tiempo transcurrido.
D= V * T → distancia = velocidad * tiempo
Durante un movimiento rectilíneo también puede presentarse el caso de que la velocidad sea negativa. Entonces podemos decir que el movimiento puede considerarse en dos sentidos, el positivo sería alejándose del punto de partida y el negativo regresando al punto de partida.
Es importante mencionar la 1° Ley de Newton, la cual nos dice que toda partícula permanece en reposo o en movimiento rectilíneo uniforme cuando no hay una fuerza neta que actúe sobre el cuerpo.
Ejemplo: en el gráfico podemos observar como la velocidad es constante en el tiempo. O sea que en 1 hora recorre 20 metros, luego en 2 horas recorre otros 20 metros (40m en total), en 3 horas recorre 20 metros más (60m en total) y así sucesivamente hasta llegar a los 100 metros.

X Y
1 hs 20 m
2 hs 40 m
3 hs 60 m
4 hs 80 m
5 hs 100 m

Movimiento circular uniforme (MCU)
El movimiento circular uniforme es aquel movimiento circular en el que un cuerpo se desplaza alrededor de un punto central, siguiendo la trayectoria de una circunferencia, de tal manera que en tiempos iguales recorra espacios iguales. No se puede decir que la velocidad es constante ya que, al ser una magnitud vectorial, tiene módulo, dirección y sentido: el módulo de la velocidad permanece constante durante todo el movimiento pero la dirección está constantemente cambiando, siendo en todo momento tangente a la trayectoria circular. Esto implica la presencia de una aceleración.
Ejemplo: podemos citar unos de los ejemplos vistos en clase, el del reloj.


Movimiento rectilíneo uniformemente variado (MRUV)
Es aquel en el que un móvil se desplaza sobre una trayectoria recta estando sometido a una aceleración constante, este movimiento recorre espacios diferentes en tiempos iguales.
La aceleración juega un papel muy importante porque es la variación que experimenta la velocidad en la unidad de tiempo. Se considera positiva en el movimiento acelerado y negativa en el retardado
También la gravedad representa un papel muy importante en este fenómeno

Ejemplo: un auto que se encuentra quieto y luego arranca. Cada vez se mueve más rápido, primero se mueve a 10 km por hora, luego a 20 km por hora, luego a 30 km por hora, y así siguiendo hasta alcanzar 100 km por hora. Su velocidad va cambiando (varía).



Movimiento oscilatorio armónico

Es un movimiento en torno a un punto de equilibrio estable. Los puntos de equilibrio mecánico son, aquellos en los cuales la fuerza neta que actúa sobre la partícula es cero. Si el equilibrio es estable, pequeños desplazamientos darán lugar a la aparición de una fuerza que tenderá a llevar a la partícula de vuelta hacia el punto de equilibrio. Tal fuerza se denomina restauradora.
En términos de la energía potencial, los puntos de equilibrio estable son los mínimos locales de la misma, y el movimiento oscilatorio tiene lugar en un entorno de un mínimo local.

Ejemplo: uno de los ejemplos vistos en clase es el movimiento del péndulo.


Leyes del péndulo

1) El tiempo de oscilación o período, Es proporcional a la raíz cuadrada de la longitud del péndulo, Es inversamente proporcional a la raíz cuadrada de la aceleración debida a la gravedad.

2) Las pequeñas oscilaciones del péndulo son isócronas, aunque su amplitud disminuya poco a poco.

3) El plano de oscilación es invariable: aunque se haga girar el punto de suspensión, el péndulo oscilará siempre en la misma dirección. Dicha invariabilidad es debida a la inercia de la materia.

4) El período o tiempo de oscilación doble es independiente de la sustancia de que está hecho el péndulo.

Dichas leyes se cumplen en cualquier lugar del universo.